git cheat sheet

€7

Configure tooling

Set user name attached to your commits
$ git config --global user.name " [name]"

Set email address attached to your commits
$ git config --global user.email "[email]"

Enable helpful colourisation of command line output
S git config --global color.ui auto

Create repositories

Create a new local repository
$ git init [project-name]

Download a project and its entire version history
S git clone [ssh://user@domain.com/repo.git]

Make changes

List all new or modified files to be committed
$ git status

Show file differences not yet staged
$ git diff

Snapshot the file in preparation for versioning
S git add [file]

Add all changes to the staging area
$ git add .

Show file differences between staging and the last
file version
$ git diff --staged

Record file snapshots permanently in version history
$ git commit -m" [descriptive message]"

Branches & Tags

List all local branches in the current repository
$ git branch -av

Create a new branch
$ git branch [branch-name]

Switch to the specified branch and updates working
directory
$ git checkout [branch-name]

Delete the specified branch
$ git branch -d [branch-name]

Create new tracking branch based on a remote
branch
$ git checkout --track <remote/branch>

Mark the current commit with a tag
$ git tag

Merge & Rebase

Merge <branch> into your current HEAD
$ git merge <branch>

Rebase your current HEAD onto <branch>
Don‘t rebase published commits!
$ git rebase <branch>

Abort a rebase
S git rebase --abort

Continue a rebase after resolving conflicts
S git rebase --continue

Use your configured merge tool to solve conflicts
$ git mergetool

Use your editor to manually solve conflicts and (after

resolving) mark file as resolved
$ git add <resolved-file>
S git rm <resolved-file>

Refactor file names

Deletes the file from the working directory and

stages the deletion
$ git rm [file]

Removes the file from version control but preserves
the file locally
$ git rm --cached [file]

Changes the file name and prepare it for commit
$ git mv [file-original] [file-renamed]

Save fragments

Temporarily store all modified tracked files
$ git stash

Restore the most recently stashed files
$ git stash pop

List all stashed change sets
$ git stash list

Discard the most recently stashed change set
$ git stash drop

http://www.comtronic.com.au



http://www.comtronic.com.au/

git cheat sheet

€7

Review history

List version history for the current branch
$ git log

List version history for the file, including renames
$ git log --follow [file]

Show content differences between two branches
S git diff [first-branch] [second-
branch]

Show what changed between commits ID1 and ID2
S git diff [ID1] [ID2]

Show who changed what and when in a file
S git blame [file]

Output metadata and content changes of the

specified commit
$ git show [commit]

Redo/Undo Commits

Reset your HEAD pointer to a previous commit
...and discard all changes since then

(cannot be undone!!!)

$ git reset --hard <commit>

...and preserve all changes as unstaged

changes
S git reset <commit>

...and preserve uncommitted local changes
S git reset --keep <commit>

Fix the last commit
$ git commit -a --amend

Un-stage the file, but preserves its contents
$ git reset [file]

Return back to the last commit (cannot be undone!!!)
$ git reset --hard

Discard local changes in a specific file
$ git checkout HEAD <file>

Revert a commit (by producing a new commit with

contrary changes)
$ git revert <commit>

Working with remote

List all currently configured remotes
$ git remote -v

Show information about a remote
$ git remote show

Add new remote repository
$ git remote add [my-remote-repo]

Download all history from the remote repository,

but don‘t integrate into HEAD
$ git fetch [remote]

Download bookmark history and directly
merge/integrate into HEAD
$ git pull [remote]

Combine the remote branch into the current local
branch
$ git merge [remote]/[branch]

Upload all local branch commits to remote repository
$ git push [remote] [branch]

Publish your tags
$ git push --tags

Create a patch file for whole branch
$ git format-patch [branch] -stdout >
[patch-file.patch]

See what is in the patch file
S git apply —-stat [patch-file.patch]

Check the patch file before applying
$ git apply —-check [patch-file.patch]

Apply a patch file to repository
$ git am -signoff < [patch-file.patch]

Ignore tracking

A text file named . gitignore suppresses
accidental versioning of files and paths matching the
specified patterns

*.log

build/

temp-*

List all ignored files in this project
$ git 1ls-files --others --ignored --
exclude-standard

http://www.comtronic.com.au



http://www.comtronic.com.au/

